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The yield conditions for the gravitational displacement of three-dimensional fluid
droplets from inclined solid surfaces are studied through a series of numerical compu-
tations. The study considers both sessile and pendant droplets and includes interfacial
forces with constant surface tension. An extensive study is conducted, covering a wide
range of Bond numbers By, angles of inclination f and advancing and receding contact
angles, 04 and 0Og. This study seeks the optimal shape of the contact line which yields
the maximum displacing force (or By = By sin f§) for which a droplet can adhere to the
surface. The yield conditions Br are presented as functions of (B, or f,6,4, Af) where
Af = 6,4 — Oy is the contact angle hysteresis. The solution of the optimization problem
provides an upper bound for the yield condition for droplets on inclined solid surfaces.
Additional constraints based on experimental observations are considered, and their
effect on the yield condition is determined. The numerical solutions are based on the
spectral boundary element method, incorporating a novel implementation of Newton’s
method for the determination of equilibrium free surfaces and an optimization algo-
rithm which is combined with the Newton iteration to solve the nonlinear optimization
problem. The numerical results are compared with asymptotic theories (Dussan V. &
Chow 1983; Dussan V. 1985) and the useful range of these theories is identified. The
normal component of the gravitational force By = B, cos § was found to have a weak
effect on the displacement of sessile droplets and a strong effect on the displacement of
pendant droplets, with qualitatively different results for sessile and pendant droplets.

1. Introduction

Fluid droplets adhering to inclined solid surfaces are encountered in several natural
processes. Raindrops sticking to windowpanes and bubbles lining the inner surface
of a glass of water are familiar examples. This phenomenon is also encountered in
several engineering applications. Condensation of vapour onto a cool solid surface
and the retention of pesticide sprays on plant leaves are typical examples. Depending
on the nature of the process, we may want the droplets to remain attached to the solid
surface or to be displaced. In both cases, it is important to identify the conditions
under which a drop, attached to an inclined surface, will be displaced and slide down
the surface (Dussan V. & Chow 1983).

The fundamental issues associated with gravitational displacement of droplets from
inclined rigid boundaries have been addressed by Dussan V. and coworkers (Dussan V.
& Chow 1983; Dussan V. 1985). These authors developed yield criteria for the critical
Bond number B, as a function of the advancing and receding contact angles, 0, and 0,
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and the angle of inclination f. In the first paper, the analysis was based on asymptotic
theory valid for small advancing contact angles 6, and much smaller contact angle
hysteresis (04 — 0g). In the second paper the asymptotic theory is less restricted and
is valid for small contact angle hysteresis (8, — 0r) and Bond number B, but for any
advancing contact angle 6,4. In both papers, a contact line with two parallel sides along
the direction of inclination was assumed. This shape is usually observed when the drop
has been displaced and slides down the surface (Bikerman 1950; Furmidge 1962), but
is not observed prior to displacement (Rotenberg, Boruvka & Neumann 1984 ; Extrand
& Kumagai 1995). Although both theories have assumed that 64 — 0 is small, we
note that the hysteresis may in fact be quite large. Values of 6, — 6 in the range
of 20°-30° have been routinely reported for gas—liquid systems, while substantially
higher values may occur for liquid—liquid systems (Good & Koo 1979; Good 1979).
Further discussion and references on contact angle hysteresis have been given in our
paper on the displacement of two-dimensional fluid droplets due to the action of a
viscous shear flow (Dimitrakopoulos & Higdon 1997, hereafter referred to as DH1).

In the area of computational studies on drop displacement, Brown, Orr & Scriven
(1980) modelled the problem of deformation of a drop of a given volume and density
on an inclined plane. They used a Newton/Galerkin finite element method to solve the
Young-Laplace equation, and calculated the drop shape for several inclination angles
f. Milinazzo & Shinbrot (1988) studied the similar problem of a drop deformation on
a vertical wall as the Bond number By increases from zero. They conducted a detailed
study, covering initial shapes with a wide range of contact angles. In both papers, the
authors assumed a contact line of fixed circular shape, and solved for the distribution
of the contact angles around the contact line. The prescription of fixed circular contact
lines is an approximation which does not conform to experimental observations. Tuck
& Schwartz (1991) considered two- and three-dimensional thin droplets on inclined
surfaces, while the drop perimeter was required to lie on a given closed curve.

In the present article, we consider the displacement of a three-dimensional fluid
droplet from an inclined plane substrate due to the action of gravity. Our goal is to
provide a comprehensive solution of the problem and hence to determine the effects
of all the relevant parameters and to assess the limits of the asymptotic theories. We
consider both sessile (0° < f < 90°) and pendant (90° < f < 180°) droplets, with
arbitrary values for the Bond number B,, the advancing contact angle 6, and the
contact angle hysteresis (0, — 0g). We seek the optimal shape of the contact line C
which gives the maximum displacing force for which a droplet can adhere to the
surface. This critical displacing force gives the yield condition for the droplet and is
determined as a function of the contact angle 6, and hysteresis (6, — 0r).

To address the problem of drop displacement, we employ a novel, three-dimensional
Newton method to determine the equilibrium shape of fluid interfaces and an op-
timization technique which is combined with the Newton iteration to solve for the
optimal shape of the contact line. Both methods are presented in our recent paper on
the displacement of three-dimensional fluid droplets in low-Reynolds-number shear
flows (Dimitrakopoulos & Higdon 1998, hereafter referred to as DH2) and will not
be discussed in detail in the present paper.

2. Mathematical formulation

We consider a three-dimensional droplet attached to an inclined solid plane as
illustrated in figure 1. The droplet size is specified by its volume V, or equivalently by
the radius a of a spherical droplet of volume V, = (4n/3)a’. The droplet (fluid 1) has
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FiGure 1. Fluid droplet attached to an inclined solid boundary.

density p;, while the surrounding fluid has density p,. The gravitational acceleration
is g and the gravity vector forms an angle f with respect to the negative z-direction;
hence f is the angle of inclination of the plane substrate. The surface tension 7 is
assumed constant. The contact line forms a closed curve C in the (x, y)-plane which
intersects the x-axis at two points, with the higher point and contact angle designated
x; and 60y, and the corresponding lower values x, and 0,.

The Bond number B, representing the ratio of the gravitational forces to interfacial
forces, is defined by

B, — (1= p2gd
4
The calculation of equilibrium shapes for fluid interfaces in the presence of gravity
may be formulated as a problem of fluid statics where the jump in hydrostatic pressure
at the interface matches the pressure jump associated with surface tension. At the
interface, the boundary condition on the surface stress f is

Af =fr—f1 =y(V-mn+(p2—pi)(g - x)n, (1)

where n is the unit normal which we choose to point into fluid 2.

For droplets in contact with a solid boundary, additional conditions are required
to prescribe the interface shape in the vicinity of the contact line. For real surfaces
(i.e. rough and chemically inhomogeneous), it has been found that the static contact
angle exhibits a hysteresis effect where the contact line remains stationary for any
angle in the range

Or <0<04 (2)
The limits 64 and 0g are called the advancing and receding angles respectively. As
in DH2, we assume that the advancing and receding angles 0,4 and Og are physical
constants and require that (2) hold for all angles along the contact line C. More
details and references concerning the phenomenon of contact angle hysteresis as well
as the boundary conditions along the contact line can be found in our earlier papers
(DH1, DH2).

With the interfacial and contact line boundary conditions given above, the deter-
mination of the critical conditions for drop displacement may be formulated as an
optimization problem. This problem may be stated as follows: for a given contact
angle 0,4 and hysteresis 84 — Oy, find that configuration corresponding to the highest
Bond number B, for which an equilibrium solution exists. An alternative, but equiv-
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alent, problem may be stated: for a given contact angle 8, and Bond number B, find
that configuration corresponding to the minimum 60, — 0z for which an equilibrium
solution exists. This latter form proves more convenient for numerical computations
and has been adopted in the present work ; however, the results may be viewed in either
context with equal validity. The optimization problem may be stated formally as:

for fixed 0, and B,, search over all contact lines C, to minimize 04, — 0z (3)

subject to
0; < 0y, (4)
0; = O, )
x; = fixed (6)

for interface configurations satisfying the boundary condition (1)

with a hydrostatic pressure distribution.

Here 0;, i = 1,..., N, are the contact angles along the contact line C, and N is the
number of discrete points specifying the position of the contact line.

The solution to this optimization problem gives the critical condition for drop
displacement in terms of the maximum Bond number B; or minimum contact angle
hysteresis 8, — Og. Unfortunately, the optimal configuration and yield condition may
not always be realized in an experiment. In any experiment, the droplet starts
with a specified initial configuration and goes through a progression of different
configurations as the experimental conditions (e.g droplet size, or substrate inclination
angle) are changed. The conditions of the experiment may be such that the droplet
cannot reach the optimal equilibrium configuration and will be displaced at less
extreme values of the parameters.

To test the sensitivity of the yield conditions to the experimental procedure, we
consider one additional optimization problem. In many experiments, the droplet shape
becomes elongated in the x-direction, i.e. in the direction parallel to the component
of gravity in the plane of the wall. To determine the critical yield conditions in
such experiments, we reformulate the optimization problem above with the additional
constraint that the magnitude of the lateral positions y cannot exceed the maximum
value |yg'™*| in the initial configuration of the droplet. The constraint on the y-position
adds the following inequality constraint to the optimization problem:

max

oI <yi <y, i=1,...,Nq (7)

This optimization will be called the y-constrained optimization problem while the
previous problem will be called the unconstrained optimization problem.

The optimization problems described above may be solved by a number of different
approaches. As an example, for a given contact line C, one might use finite element
methods to solve the Young—Laplace equation for the interface shape and thereby
to determine the contact angles (Brown et al. 1980). The solution procedure for a
given C might be combined with nonlinear programming methods to solve the full
optimization problem. In the present paper, we have adopted a different approach.
In our earlier work (DH2), we developed algorithms to solve optimization problems
similar to those above for droplets immersed in viscous flows governed by the Stokes
equations. The quiescent fluid and hydrostatic pressure fields arising in the present
work may be viewed as a trivial case of Stokes flow with zero velocity. Under these
conditions, the algorithms of the earlier effort may be employed without modification,
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yielding solutions of the optimization problem for the interface shapes and contact
angles. It should be emphasized that the rationale for this approach is the pre-
existence of a general algorithm for solving the interfacial optimization problems in
the presence of arbitrary Stokes flows.

A detailed description of our numerical methods for the Stokes flow problem has
been given in DH2. Briefly, the method employs a spectral boundary element algo-
rithm to solve the Stokes equations, a Newton iteration to determine the interface
shape, and a successive linear programming algorithm to solve the optimization prob-
lem. In the present work, the numerical discretization of the boundary surfaces as well
as the order of the spectral approximations are the same as described in DH2, § 3. The
present problem admits one level of symmetry around the plane y = 0, which we ex-
ploit to reduce the computational time and memory requirements. Detailed tests of the
numerical algorithm were described in DH2. We note that additional comparisons for
the gravitational problem have been made with the results of Brown et al. (1980) (their
figure 5) and Milinazzo & Shinbrot (1988) (their figure 20), for the case of circular
contact lines. Our computations are in excellent agreement with these earlier results.

3. Results

In this paper, our goal is to present a comprehensive study of the problem of grav-
itational displacement of fluid droplets from solid surfaces. The relevant parameters
are the Bond number By, the inclination angle /5, the advancing contact angle 6, and
the receding contact angle 0y or equivalently the hysteresis 0, — 0. The gravitational
displacement force may be characterized by its tangential and normal components
relative to the plane substrate: By = B;sinff and By = B, cos 5. Alternatively, we
may consider the total Bond number B, and the inclination angle 5. We shall see that
the force components (Br, By) are the most relevant parameters for interpreting the
physics of gravitational displacement; however, the combination (B, f) most closely
represents the conditions of experimental systems.

For convenience, we assume that the density of the droplet is greater than that
of the surrounding fluid. With this assumption, the Bond number is always positive.
For inclination angles 0° < f < 90°, the normal force is positive (By = 0) and acts
to flatten the droplet against the solid. For inclination angles 90° < f < 180°, the
normal force is negative (By < 0) and acts to pull the droplet away from the solid.
Results for droplets (or bubbles) with density less than the surrounding fluid may be
obtained by reversing the densities and replacing f with 180° — .

We note that there are two common scenarios which may be encountered in exper-
iments or applications. In the first scenario, one has a surface at a fixed inclination
angle f, and the volume (or B,) of the droplet is increased until the droplet is dis-
placed. This system is associated with applications involving dropwise condensation
or experiments in which the volume of the droplet is increased by injecting fluid.
In the second scenario, a droplet of fixed volume (or B,) is placed on a horizontal
surface, and the plane is tilted until the critical angle of inclination f is reached. This
system is favoured in many experiments designed to measure contact angle hysteresis.
For our purposes, the first scenario involves increasing the Bond number while hold-
ing f constant, while the second involves varying  while holding B, constant. The
details of the experimental procedure have no effect on the prediction of the yield
condition for the unconstrained optimization problem. However, in our discussion
of the y-constrained optimization, we shall see that the experimental procedure may
have a subtle effect on the observed experimental results.
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FIGURE 2 (a—c). For caption see facing page.

With this overview, we present a brief outline of the results in the subsections
below. In the first three subsections, the yield condition is determined as a function
of the contact angle hysteresis 8,4 — 6 for droplets with different contact angles 0.
Section 3.1 provides results for vertical walls, while §3.2 covers inclined walls with
sessile droplets (0° < f < 90°) and §3.3 covers inclined walls with pendant droplets
(90° < B < 180°). In § 3.4, we consider the second experimental scenario by fixing the
Bond number and varying the inclination angle until the yield condition is reached.
Finally, in § 3.5 we compare our computational results with experimental observations
and theoretical predictions.
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FIGURE 2. Equilibrium shapes for droplets on a vertical wall (f = 90°) with advancing contact angle
04 = 90° and for the unconstrained optimization problem. For (a—c) the Bond number is B; = 0,
0.1, 0.2, 0.3, 0.4. (a) The optimal shape of the contact line. The dashed lines show the location of
the jump region. (b) The cross-section of the drop surface with the plane y = 0. (¢) The variation of
the contact angle 0 as a function of the azimuthal angle ¢. (d,e) The drop surface for Bond number
B, =04.

3.1. Drop displacement on a vertical wall, f = 90°

We begin our investigation of the gravitational displacement problem by considering
a fluid droplet on a vertical wall (f = 90°). In this case the normal component of
the gravitational force By is zero, and the total gravity force acts in the positive
x-direction, parallel to the solid surface. Figure 2 (a,b) shows the optimal shapes of
the contact line and the drop profiles (i.e. the cross-section of the drop surface with the
plane y = 0) for the unconstrained optimization for a drop with advancing contact
angle 0,4 = 90° and for several values of the Bond number B,.

With each successive curve, a larger B, is specified, and a larger contact angle
hysteresis is required to hold the drop in place. The distribution of contact angles
around the contact lines are shown in figure 2 (c), while figure 2(d,e) shows three-
dimensional views for a typical droplet shape. Two noteworthy features are apparent
from these figures. First (see figure 2a), we observe that the lower edge of the contact
line is continuously displaced further downward as the Bond number is increased.
As the gravitational force on the droplet increases, the net interfacial force must be
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increased, and this is achieved by reducing the contact angle on the front of the
droplet. With a smaller angle, the droplet spreads over a larger area to accommodate
the same fluid volume. The second noteworthy feature is that the width of the contact
line in the y-direction increases as the Bond number is increased. This feature is of
interest for a number of reasons. On first impression, it would seem more likely that
a droplet should spread in the x-direction (parallel to gravity), and not in the y-
direction; however, a simple physical argument reveals the logic of this transition. If a
droplet spreads in the x-direction, the long sides of the drop yield interfacial forces at
the contact line which pull sideways and do not act to counter the gravitational force.
By contrast, if the droplet spreads in the y-direction, the increased width of the contact
line on the front and back increases the net interfacial force which is proportional to
04 — Or multiplied by the width. The increased width and the reduced contact angle
both act to increase the interfacial force. Thus the most stable drop for a given volume
has the wide asymmetrical profile illustrated in figure 2 (a). While the contours seen in
these figures represent the optimal (most stable) contact lines a droplet may achieve,
they are not necessarily the contours which will be seen in an experiment when a
droplet is placed on a horizontal surface, and the surface is tilted. We shall return to
this issue in the discussion below. It is worth noting that these shapes are similar to the
equilibrium shapes for a droplet immersed in a viscous shear flow (DH2, figure 4a).
While we have focused on the shape of the contact line, the variation of the
contact angle around the contour also has an important effect on the force balance.
Figure 2 (c) shows the variation of the contact angle 6 along the contact line as a
function of the azimuthal angle ¢ for the stated values of 0, and B,;. The azimuthal
angle ¢ is measured with respect to the positive x-direction as usual. This figure
shows that the lower portion of the contact line admits a single maximum contact
angle (the advancing angle 6,) while its upper portion admits a single minimum angle
(the receding angle 0r). Between these two portions there is an acute jump in the
distribution of the contact angles which occurs for ¢ ~ 55°-90° and ¢ ~ 270°-305°.
These locations are noted as dashed lines on the contact line contours in figure 2 (a).
Clearly, the portion of the contact line which admits the advancing angle 0,4 is smaller
than the portion which admits the receding angle 0. The rapid jump in contact angle
is a further consequence of the droplet’s attempts to maximize the interfacial force.
The drop holds the minimum contact angle over the entire upper portion of the
contact line, then makes the fastest possible transition to the maximum angle on the
lower portion of the contour. The rapid change in contact angle observed here is
in distinct contrast to the smooth distribution observed in simulations for circular
contact lines (Milinazzo & Shinbrot 1988; Brown et al. 1980). Finally, with reference to
the numerical computations, we note that this jump presents a significant challenge to
the numerical algorithm. As indicated in DH2 (§ 3), it is important to concentrate grid
points near the jump to accurately capture the rapid change in the interfacial shape.
Having explored the basic principles associated with the deformation and displace-
ment of the droplet, we turn our attention to the prediction of the yield conditions
as a function of the drop parameters. Figure 3 shows the critical B, as a function of
hysteresis 8, — 0r for a drop on a vertical wall (f = 90°), for several values of 6.
For each point on a given curve, we specify the Bond number and a fixed value of
04, and then find the optimal shape which requires the minimum hysteresis 64 — 0r
for equilibrium. The specified B, then represents the yield condition for that value of
04 and 64 — 0. The terminal points at the end of each curve represent the largest
0,4 — O for which accurate numerical calculations could be executed. The criteria for
an accurate numerical solution include convergence of the linear programming itera-
tion and of the Newton iteration and consistency with increasing order of the spectral
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FIGURE 3. Critical Bond number B, versus hysteresis 6,4 — 0 for f = 90° and for
the unconstrained optimization problem.

expansion. For all cases, we find that the algorithm stops owing to the convergence
failure of the linear programming algorithm. On physical grounds, it appears that the
true terminal point of each curve corresponds to a value (0, — 0g) — 0,4, for which
0r — 0 and the interface becomes tangent to the boundary wall on the upper portion
of the contact line. We emphasize that figure 3 gives accurate yield conditions for the
plotted parameter values. The only limitation is that we are unable to provide precise
predictions for extreme values of the hysteresis 0,4 — Og.

The curves of figure 3 reveal interesting behaviour for the critical B, at different ad-
vancing contact angles 0,4. For a given hysteresis 6, — 0, increasing the contact angle
0, from small values, increases the critical gravitational force or By, for values of the
advancing contact angle up to 6,4 =~ 70°. Above this value, increasing the contact angle
0,4 decreases the critical Bond number. Figure 3 shows that the critical Bond number
B, for 04 = 90° is close to that for 0, = 70°, but admits a much smaller value at
0, = 110° and 0, = 120°. It is of interest to note that Dussan V. (1985) found the same
behaviour (her figure 6), for the case of small hysteresis 8, — 6z and Bond number B,.

The explanation for the behaviour as a function of contact angle 0, is straightfor-
ward when one considers the force balance on the droplet. The displacing force is de-
termined by the weight of the droplet and the angle of inclination, i.e. (p;—p2)Vog sin f3,
which is equal to (4r/3)(p; — p2)a’g sin f. For small hysteresis, the net interfacial force
is proportional to the width of the droplet (or radius r of the contact line) and the
quantity (cos Oz — cos 64) which measures the component of the force parallel to the
wall. The radius of the contact line decreases monotonically with 0,4, while the quantity
(cosOr —cos 6,) scales as (0, — 0g) sin 8,4 for small hysteresis. It increases for small 6,4
but reaches a maximum at 6, = 90°. All scalings to this point are valid for arbitrary
contact angle 0,. For small contact angles, the decrease in the contact line radius
scales as ~ 0,73 and is more than offset by the increase in sinf, ( ~ 0,); the inter-
facial force increases, and hence a stronger displacement force is required with scaling
By ~ 0,4%. For larger contact angles, the radius of the contact line decreases slowly
but monotonically, while sin 6, approaches its maximum value. At angles slightly be-
low 0,4 = 90°, the effect of the reducing radius becomes dominant, and the interfacial
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force begins to decrease. For angles above 0, = 90°, both the radius and the sin 6,
term decrease as 04 increases. Thus the critical Bond number reaches a maximum at
04 ~ 70° and decreases for higher angles with more rapid decrease above 90°.

At this time, we return to the subject of the contact line contours and consider
how the conditions of an experiment might affect the observed shapes. Recall that
the solutions presented in figure 2 (a) represent optimal solutions independent of the
initial configuration of a droplet. Consider a droplet with hysteresis 8, — 0. On a
horizontal surface, this droplet may exist in an infinite number of configurations. If
the droplet is formed by injecting liquid through a small hole in the substrate, it might
form a section of a sphere with all contact angles having the value 6,. Upon the tilt
of the surface, the lower portion of the contact line would immediately begin to move
downwards as the value of 6, is exceeded. This would lead to elongated droplets with
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FIGURE 4. Equilibrium shapes for droplets on a vertical wall (f = 90°) with advancing contact angle
04 = 90° and for the y-constrained optimization problem. For (a—c) the Bond number is B; = 0,
0.1, 0.2, 0.3, 0.4. (a) The shape of the contact line. The small dashed lines show the jump region for
B, = 0.4. (b) Drop profile. (¢) The variation of the contact angle § as a function of the azimuthal
angle ¢. (d,e) The drop surface for Bond number B; = 0.4.

shapes quite different from those shown in figure 2. The yield condition for these
droplets may be less than for those with the optimal contours of figure 2. In another
experiment, suppose one starts with the droplet on a horizontal surface as before, but
extracts fluid until the drop just begins to recede, yielding a section of sphere with all
contact angles equal to 6. When the surface is tilted, it is the upper portion of the
droplet which will move first as the contact angle falls below 0. In this case, short
wide droplets will form whose shape might well approach the optimal shapes shown
above. The important conclusion here is that the actual yield condition is determined
not only by the maximum possible yield condition, but also by the initial configuration
of the droplet, the conditions of the experiment and the evolution of the contact line.

To test the sensitivity of the critical gravitational force subject to these conditions,
we consider the y-constrained optimization problem. As noted in the previous section,
for this problem, we assume that the experimental conditions constrain the droplet
to move in the direction of gravity, and we require that the y-positions do not exceed
the maximum extension in the initial configuration. In this subsection, as well as in
§3.2 and §3.3 below, the undisturbed drop shape corresponds to B; = 0 and thus it
is a spherical cap with a single angle 04 around a circular contact line.

Figure 4(a,b) shows the contact line contours and the drop profiles for the y-
constrained optimization for a droplet with advancing contact angle 6, = 90° and for
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several values of the Bond number B,. As with the unconstrained optimization above,
on each successive curve, a larger B, is specified and a larger contact angle hysteresis
is required to hold the drop in place. Figure 4 (a) shows that the lower portion of
the contact line has been displaced much further downwards compared with that of
the unconstrained optimal problem for the same values of the Bond number. This
behaviour is to be expected because of the y-constraint on the shape of the contact
line. These contact line contours are qualitatively similar to the experimental shapes
reported by Extrand & Kumagai (1995) (their figure 3) and Rotenberg et al. (1984)
(their figure 8).

Figure 4(c) shows the variation of the contact angle 6 along the y-constrained
contact line as a function of the azimuthal angle ¢ for the prescribed values of 6, and
B,. As before, the lower portion of the contact line admits a single maximum contact
angle 0,4, its upper portion admits a single minimum contact angle 0g, and there is an
acute jump in the distribution of the contact angles which occurs for ¢ ~ 55°-115°
and ¢ =~ 245°-305°. The positions of the contact line, at which the jump occurs for
B; = 0.4, are noted in figure 4 (a). In contrast to the unconstrained contact line, the
portion of the y-constrained contact line which admits the advancing angle 6, is
larger than the portion which admits the receding angle 0. In comparing figures 2 (c)
and 4 (c) for the same Bond number, it is obvious that the y-constrained contact
line admits a smaller receding contact angle 0. This implies that the droplet requires
more hysteresis to hold its position, i.e. that it is slightly less stable than the optimal
solution. Figure 4 (d,e) shows two three-dimensional views of the drop for B; = 0.4
for this problem. Comparison with the three-dimensional views in figure 2 shows
the obvious differences between the drop shapes for the two optimization problems.
The influence of the advancing contact angle 04 on the y-constrained droplet is
qualitatively similar to the unconstrained case (shown in figure 3). Detailed results
for this case are given in Dimitrakopoulos (1998).

For a direct comparison between the unconstrained and y-constrained optimiza-
tions, we show the critical Bond number for the two cases on the same plot in figure 5
for both a large contact angle 0, = 90° and a smaller angle 0, = 30°. In each of
these figures, we plot one additional curve, corresponding to the case of a circular
contact line. This last curve is determined as the solution of an optimization problem
for contact lines of circular shape but arbitrary radius (DH2, § 2.3). The insets in each
figure show examples of the actual shape of the contact line contours and the drop
profiles for the three different optimization problems. The results plotted in figure 5
show that for large advancing contact angles 04, the critical Bond number B, for
the unconstrained optimization problem is higher than for the two other problems as
expected. As the contact angle 6, decreases, the difference in B, for the unconstrained
and the y-constrained problem becomes smaller and smaller. (Note the different scales
in the figures 5a and 5b.) For all angles 0,4 studied, we found that the circular contact
line admits a significantly smaller Bond number. For a droplet free to move over a
solid surface, these results show that the assumption of a circular contact line predicts
a measurably smaller yield stress than would be achieved in practice.

3.2. Displacement of a sessile drop, 0° < f < 90°

Having considered the influence of the Bond number B, on the displacement of a
drop on a vertical wall, we now turn our attention to the effects of the inclination
angle . We begin by considering a sessile drop, i.e. 0° < f < 90°. In figure 6 (a) we
plot the critical B; as a function of hysteresis 8, — 0r for a drop with 6,4 = 90°, for
the unconstrained optimization problem and for several angles of inclination f§ in the
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FIGURE 5. Influence of the shape of the contact line for droplets on a vertical wall (f = 90°). (a)
Critical Bond number B, versus hysteresis 64 — 0 for 64 = 90°, and for different optimal contact
lines. Also shown are the shapes of the contact line as well as the drop profiles for B; = 0.4. (b) As
in (a) but for 8, = 30°. Contact line contours and drop profiles are shown for B, = 0.06. Contact
lines: ——, unconstrained; - - - -, y-constrained; ———, circular.

range 10° to 90°. For the same value of hysteresis 04 — Og, as the inclination angle
decreases from 90°, the critical B, increases. But for a drop on an inclined surface,
the displacing force is not the total gravitational force or Bond number, but rather
the tangential component of the gravitational force By = B, sin f8. Figure 6 (b) shows
the results of figure 6 (a) replotted with the ordinate axis showing the displacing force
Br. All the curves for several inclination angles f now fall close to the curve for
p = 90°. At fixed Br, we see that the inclination angle has only a very slight effect
on the displacement condition. As f decreases from 90°, the normal component of
gravitational force By increases, producing a slight spreading of the droplet over
the surface. This increases the size of the contact line and increases the interfacial
force, but yields only a marginal increase in the critical By for 10° < f < 90°. For
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FIGURE 6. Influence of the inclination angle on the displacement of sessile droplets, for 0,4 = 90° and
for the unconstrained optimization problem. (a) Critical Bond number B, versus hysteresis 64 — Og.
(b) Critical B versus hysteresis 04 — Og.

asymptotically small angles f, the critical Bond number would become quite large,
inducing significant spreading and producing a larger effect on the yield condition Br.

To illustrate the effect of the normal force By on the droplets, we plot the optimal
contact line contours and the drop profiles for By = 0.225 and for = 90°,45°,20°
in figure 7 (a,b). Smaller inclination angles, or higher By, correspond to flatter drop
shapes, which produces greater extension in both the x- and y-directions.

To show the difference between the unconstrained and the y-constrained shape, we
plot in figure 8 three-dimensional views of a drop on an inclined wall with = 45°
and B; = 0.4 for these two optimal shapes. We see that the unconstrained shape shows
the characteristic y-extension, while the y-constrained shape shows greater extension
in the x-direction. These differences are also shown in the insets of figure 9, where we
plot the critical force Br versus hysteresis 8, — 6r for f = 45°. As expected, for the
same hysteresis, the critical force Bt is smaller for the y-constrained shape.
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FIGURE 7. Influence of By on the shape of sessile droplets, for 8, = 90° and By = 0.225 for the
unconstrained optimization problem. (a) The optimal shapes of the contact line. (b) Drop profiles.
Inclination angle ff: ——, 90°; ----, 45°; ———, 20°.

3.3. Displacement of a pendant drop, 90° < § < 180°

Having considered the influence of the inclination angle f on the displacement of
droplets with a positive normal force, we now turn our attention to the displacement
of pendant droplets (90° < f < 180°). As noted earlier, we assume that the drop
density is higher than that of the surrounding fluid (p; = p;); hence the normal force
By now tends to pull the droplet away from the wall. In figure 10 we plot the critical
Br as a function of hysteresis 8, — 6r for the unconstrained optimization problem
and for several angles of inclination f in the range 90° to 178°.

For inclination angles in the range 90° to 160°, the results of this figure are similar
to those for smaller inclination angles. In particular, we observe a weak dependence on
the inclination angle with a monotonic dependence on the normal force component.
As the force By increases, it pulls the droplet away from the wall, decreasing the
radius of the contact line and weakening the interfacial force. This yields a slight
reduction in the critical value of Br.

For large angles f3, the effect of the normal force is sufficiently large to have a
qualitative effect on the equilibrium shapes. To illustrate this effect, we show detailed
results for two characteristic cases f = 160°,170° in figures 11 and 12 respectively.
In these figures, we observe the competing effects of the tangential and normal
force components. For smaller inclination angles, the tangential force component is
dominant and increasing Bond number lead to significant expansion of the contact
line over the solid surface. For the § = 160° inclination shown in figure 11 (a),
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(b)

FiGuUre 8. Equilibrium shapes for a sessile droplet with 04 = 90°, for § = 45° and B; = 0.4 (or
Br = 0.283). (a) The unconstrained optimal shape. (b) The y-constrained optimal shape.

the tangential and normal forces are nearly balanced, and the contact lines show
minimal change as the Bond number is increased. For the f = 170° surface shown
in figure 12 (a), the normal force now dominates, and the contact line contracts with
increasing Bond number. This contraction leads to a significant reduction in the
critical value of Br.

Additional results for pendant droplets including y-constrained optimizations are
given in Dimitrakopoulos (1998).

3.4. Displacement of a drop on a tiltable plane

In §3.1-§3.3, we studied the yield conditions for the gravitational displacement of a
droplet on an inclined plane at fixed angle of inclination f# while increasing the Bond
number By. In this section, we keep the Bond number constant while increasing the
angle of inclination. This problem corresponds to the procedure employed in many
experiments on gravitational displacement. The question which arises is whether the
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FIGURE 9. Critical By versus hysteresis 04 — 0g for 0, = 90° and = 45°, for the unconstrained
(—) and the y-constrained shape (----) of the contact line. Also shown are the shapes of the
contact line as well as the drop profiles for B; = 0.4 (or By = 0.283).
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FiGURE 10. Influence of the inclination angle on the displacement of pendant droplets with advancing
angle 04 = 90°, for the unconstrained optimization problem: critical By versus hysteresis 64 — Og.

initial configuration and the conditions of the experiment affect the final value of
the yield condition. For the unconstrained optimization, the predicted yield condition
represents a true maximum independent of the initial configuration.

Thus none of the results for the unconstrained optimization are changed in the
present section. For the y-constrained optimization however, the two different ex-
perimental procedures yield different initial configurations, and hence different y-
constraints. In the previous subsections, the initial shape was that of a spherical
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FIGURE 11 (a—c). For caption see facing page.

cap corresponding to B; = 0. For the new model problem, we fix the Bond number
and increase the inclination angle f from 0° to 90° (for sessile drops) or decrease f§
from 180° to 90° (for pendant drops). Therefore the undisturbed y-constrained shape
corresponds to the equilibrium shape for the prescribed value of B, at inclination
of f =0° or f = 180°. Both shapes have circular contact lines, but the first shape is
flatter than the spherical cap with a larger contact radius, while the second is taller
and has a smaller contact radius.

We begin by considering the case of 0° < f < 90°. Figure 13 shows the contact
lines, drop profiles and three-dimensional views for the y-constrained optimization.
The results of this figure may be compared with the analogous results shown in
figure 4 for a vertical wall with increasing Bond number. Despite the differences in
initial configurations, the behaviour of the droplets is quite similar in their response to
the increased displacement force. For a quantitative comparison of the two different
experiments, we may compare the yield condition in each system with the values
predicted by the unconstrained optimization. The comparison for the present system
is shown in figure 14 while the earlier results are presented in figure 5(a) for a
vertical wall and in figure 9 for f = 45°. In all cases, the y-constrained optimization
predicts a lower critical force B than the unconstrained optimization, but the relative
magnitudes are similar in all cases.

We continue our study by considering the displacement of pendant droplets. For
these droplets, the initial configuration is a droplet suspended from a horizontal
surface with § = 180°. Figure 15 shows the results for the y-constrained optimization
for a Bond number B; = 0.5. The contact line contours and drop profiles for this



On the gravitational displacement of fluid droplets from inclined solid surfaces 199

o i
il

Wiy,
gy
AT

T
o

FiGure 11. Equilibrium shapes for droplets with 8, = 90° on an inclined wall with f = 160° and
for the unconstrained optimization problem. For (a,b) the Bond number is B; = 0, 0.3, 0.6, 0.95.
(a) The shape of the contact line. (b) The drop profile. (¢,d) The drop surface for Bond number
B, =0.95.

case closely resemble those for a vertical wall shown in figure 4. The curves in this
figure do not show the contraction of contact lines previously seen for pendant drops
at large f, because the initial configuration at f = 180° has already experienced the
maximum contraction.

The critical force Br for pendant droplets is plotted as a function of hysteresis
04 — 0 in figure 16, for both the y-constrained and unconstrained optimizations.
The insets show typical examples for the contact line contours and the drop profiles.
As with the previous results, the critical Br for the unconstrained optimization is
proportionately higher than that for the y-constrained optimization.

To end this subsection, we collect results for the critical displacement force Br for
both sessile and pendant droplets and show the influence of the Bond number B, in
figure 17. This figure may be viewed as the complement of figures in earlier subsections
which showed the influence of different f values while varying the Bond number.
This figure illustrates the influence of the normal component of the gravitational
force By. In particular, it shows a monotonic trend with the highest yield conditions
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FIGURE 12. Equilibrium shapes for a droplet with 0, = 90° on an inclined wall with f = 170° and
for the unconstrained optimization problem. The Bond number is B; = 0, 0.3, 0.6, 0.9, 1.1. (a) The
shape of the contact line. (b) The drop profile.

for the flattest droplets (sessile droplets, large B,) and the lowest yield conditions for
the tallest droplets (pendant droplets with large B,). As noted earlier, this trend may
be predicted from the connection between the width of the contact line and the total
strength of the interfacial force.

3.5. Comparison with experimental results and asymptotic theories

In this subsection, we briefly consider some experimental observations and theoretical
predictions which may be compared with the results of our computations. We note
that there have been a number of observations of droplet shape for drops on inclined
surfaces. Early efforts (Bikerman 1950; Furmidge 1962) reported symmetric oval
shapes with parallel sides for sliding droplets, but Bikerman sketched an asymmetric
profile for the droplet at the instant of incipient motion. Rotenberg et al. (1984) also
show asymmetric profiles for attached drops. In a recent paper, Extrand & Kumagai
(1995) observed the critical contact lines for droplets on inclined surfaces, and found
curves which were neither circular, nor parallel sided, but exhibited asymmetric
profiles consistent with the report of Bikerman. The asymmetric profiles reported in
these papers compare well with our y-constrained profiles. In addition, Extrand &
Kumagai (1995) provided a photograph of a water droplet on inclined PCTFE, at

FiGURE 13. Equilibrium shapes for a sessile droplet with 6,4 = 90° and B,; = 0.5, for the y-constrained
optimization problem. For (a,b) the inclination angle is f = 0°, 10°, 20°, 30°, 37.5°. (a) The shape of
the contact line. (b) The drop profile. (¢,d) The drop surface for f = 37.5°.
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FIGURE 14. Critical Br versus hysteresis 04 — Or for a sessile droplet with 04 = 90° and B; = 0.5,
for the unconstrained (——) and the y-constrained optimization problem (----). Also shown are
the contact line contours and the drop profiles for f = 37.5° (or Br = 0.304).

the instant the drop began to move (their figure 3). In comparing this photograph
with our y-constrained results for sessile droplets, we note that our predictions match
the experiment in several key features including elongation, asymmetry and in the
indentation and inflection points on the sides of the drop.

The prediction of the critical gravitational force for droplet displacement is probably
the most important issue addressed in this paper. Unfortunately, the majority of
experiments in the literature focus on the measurement of the contact angle hysteresis
and do not provide detailed information of the yield conditions. Extrand & Kumagai
(1998, personal communication) have provided details concerning their experiments
including the Bond numbers and inclination angles for the onset of drop displacement.
These data are plotted in figure 18 together with our predictions for y-constrained
sessile droplets on a tiltable plane. The data are taken from experiments with water and
ethylene glycol on a variety of different substrates. For each solid/liquid combination,
measurements were taken for 3 or 4 different drop sizes yielding a different Bond
number for each case. In all cases, the experimental data show a critical condition
lower than that predicted by the numerical computations. For a given gravitational
force Br, the measured hysteresis 0, — Or ranges from 3° to 8° lower than the
numerical prediction. The authors state that there is an uncertainty of as much as
+3.4° in the measured hysteresis; however this range does not quite explain the full
deviation from our predictions.

There are two likely explanations for the discrepancy between the computations
and the experimental data. First, we note the possibility that small amounts of
surfactant might be present in the experimental system, reducing the surface tension

FIGURE 15. Equilibrium shapes for a pendant droplet with 6, = 90° and B, = 0.5, for the
y-constrained optimization problem. For (a,b) the inclination angle is f = 180°, 170°, 160°, 150°,
140°, 130°. (a) The shape of the contact line. (b) The drop profile. (c,d) The drop surface for
p = 130°.
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FiGURE 15. For caption see facing page.
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FiGURE 16. Critical By versus hysteresis 04 — 0g for a pendant droplet with 04, = 90° and B; = 0.5,

for the unconstrained (——) and the y-constrained optimization problem (----). Also shown are
the contact line contours and the drop profiles for f = 130° (or By = 0.383).
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FIGURE 17. Critical Bt versus hysteresis 04 — 0 for a droplet with 8, = 90° and for the y-constrained
optimization problem. Sessile drop with B, : O, 1.0; [J, 0.5; ¢, 0.1. Pendant drop with B;: A, 0.1;
Vv, 0.5.

and hence the measured yield force Br. This effect would reduce the discrepancy
with the numerical results. Second, we recall that the y-constrained predictions in the
current effort derive from an optimization problem in which the drop contact line
evolves from an initially circular shape to an elongated profile. In an experiment,
there is no guarantee that the droplet will follow a path leading to this optimal
configuration. As the inclination angle is increased, the droplet contact line may
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FiGUre 18. Comparison of our computational results to experimental data by Extrand & Kumagai
(1995): critical Br versus hysteresis 04 — O for a sessile droplet on a tiltable plane. The solid
lines represent our predictions for B; = 0.5 and for the y-constrained optimization problem.
Experimental data: B, water; A, ethylene glycol; on several surfaces with Bond number B, in the
range of 0.57-1.24.

advance through a series of small discrete jumps. As the critical angle of inclination is
approached, a small jump in the contact line may be sufficient to displace the droplet
prematurely. Despite the quantitative discrepancies, we note that the experiments
show good agreement with the computations in a number of qualitative trends. The
data show an increase in displacement force with increasing hysteresis. In addition,
the experimental data indicate a maximum slope for contact angles 6, of 56.6°, 77°
and 85.4° consistent with the predicted behaviour for 6,. As noted above, the droplets
also show qualitative agreement with the shape of the predicted contact lines.

Turning our attention to comparisons with previous computational efforts, we
note that there have been no previous studies which predicted the shapes of the
distorted contact lines. Brown et al. (1980) and Milinazzo & Shinbrot (1988) studied
gravitational displacement assuming fixed circular contact lines. We have repeated our
calculations using these assumptions and find excellent agreement with their results.
The comparison between the optimal solutions and the circular contact lines has been
discussed in the subsections above.

Theoretical predictions for the yield condition for gravitational displacement have
been developed by Dussan V. & Chow (1983) and Dussan V. (1985) using asymptotic
approximations. These authors assumed a droplet contour with an oval shape with
parallel sides. They further assumed a constant angle Oz on the front portion of the
oval and a constant angle 6, on the rear. These assumptions are broadly consistent
with the results of our y-constrained optimization solutions.

In the first paper, Dussan V. & Chow employed small angle theory to determine
the yield condition subject to the joint asymptotic limits 0, — 0r < 04 < 1. They
provided a complicated expression for the yield condition which can be expanded into
two expressions, one valid for By — 0 and the other valid for By — c0. To compare
with our results for a vertical wall with f =90° (By = 0), we consider the limit for
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FIGURE 19. Ratio of critical Br to asymptotic predictions based on (8) for f = 90° and for
the y-constrained contact line.

By — 0 and find
(Br)asymi = 0.8342 077 (04 — 0g). (8)

The predictions of the asymptotic theory are compared with the numerical compu-
tations for the y-constrained optimization in figure 19. Based on these results, we
conclude that the quantitative predictions of the asymptotic theory are valid over
a very limited range, with poor agreement with all direct numerical results of this
paper. In fact, this is not surprising since Dussan V. & Chow’s theory requires not
only 04 < 1, but also 8, —0r < 64. Thus the theory is valid only for vanishingly
small values of the contact angle hysteresis, i.e. only within a very small region in
the upper left corner of figure 19. Despite its limited predictive range, the asymptotic
theory is of significant interest, because it captures the correct physics and provides
the proper scaling for small contact angles. Comparisons with the results for the
unconstrained optimization problem and for other inclination angles appear similar
to those in figure 19.

Dussan V. (1985) provided an asymptotic theory which is less restrictive and is valid
for small contact angle hysteresis 0, — 0z and Bond number B, but for any advancing
contact angle 0,. While Dussan V.’s theory is based on a rigorous asymptotic analysis,
the prediction for the yield condition for small hysteresis and Bond number reduces
to a simple idealized model which is presented here.

For B; < 1 and 04 — Or < 1, the undisturbed droplet shape is a spherical cap with
a circular contact line of radius r, which i1s connected with the characteristic radius a
via the relation

Vzﬂncﬂ:E r (2—3C(.)SHA+COS39A). o)

3 3 sin® 0,4
In an idealized model, we may assume that the contact angle on the top half of the
circle is equal to 6, while that on the bottom half is equal to 64. The total interfacial
force on the droplet is then F, = 2ry(cos 0g —cos 04). Substituting for r and setting the
interfacial force equal to the gravitational force yields the prediction for the critical
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FIGURE 20. Ratio of critical B to asymptotic predictions based on (10). (a) Unconstrained optimal
contact line and f# = 90°. (b) y-constrained contact line and f = 90°. (¢) Unconstrained optimal
contact line and § = 170°.

displacement force

3 (cosr —cosf,) sinfy
215371 (2—3cos 4+ cos? 04)1/3"

This result is identical to Dussan V.s (1985) asymptotic prediction in her equa-
tion (5.3).

In figure 20 we show the ratio of the numerical computations for By to the
asymptotic prediction (10) as a function of the reduced hysteresis (04 — 0r)/64. In
these plots, the individual curves correspond to computations for different values of
the advancing contact angle 0,4. Figure 20 (a,b) shows comparisons for unconstrained
and y-constrained optimizations for vertical walls, while figure 20 (¢) shows results for
a pendant droplet with § = 170°. The first conclusion is that all computed results show
good agreement with the asymptotic theory in the limit as 8, — g approaches zero.
For the y-constrained optimization, the asymptotic theory shows good agreement for
the entire range of 6,4 — 0. While this may seem surprising at first, it can be explained
by examining the contact lines and contact angle distributions in figure 4. While the
droplet experiences significant elongation, the width of the droplet is unchanged, and
the rapid change in the contact angle distribution is consistent with the assumption in
the simple theory. Thus the idealized assumptions remain valid and the theory gives
good predictions. By contrast, for the unconstrained optimization, the width of the

(BT)asym2 = (10)
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droplet increases significantly with increasing B,, and the theory underpredicts the
numerical results. For the pendant droplet at f = 170°, the computed contact line
contracts with increasing By for large contact angles, reducing the interfacial force,
and decreasing the yield condition. In this case, the simple theory based on constant
width overpredicts the critical displacement force. In summary, we find excellent
agreement with the asymptotic theory in its range of validity, but see significant
departures when the width of the contact line changes in response to the gravitational
distortion.

4. Conclusions

In this paper we have conducted a comprehensive study of the problem of gravi-
tational displacement for three-dimensional droplets from inclined solid surfaces. We
have considered a wide selection of parameters to investigate the physical behaviour
of different droplets and to test the limits of theoretical predictions. This study com-
plements the analytical theories of Dussan V. & Chow (1983) and Dussan V. (1985).
A number of important conclusions have been reached.

(i) The contact line contours for real droplets show fore-and-aft asymmetry with
a distorted shape not well represented by the simple circular planforms assumed by
previous authors. The distorted profiles allow rapid changes in contact angle which
increases the ability of a droplet to stick to a surface. The y-constrained contact
line contours predicted by our simulations show good qualitative agreement with
experimental observations.

(i1) The critical gravitational force By predicted by the unconstrained optimization
provides an upper bound on the yield condition for a droplet on an inclined surface.
Alternative droplet configurations resulting from the y-constrained optimization show
a small change in the predicted yield condition compared to the unconstrained case.
Predictions based on circular contact lines show a significant change in the critical
gravitational force.

(iii) Theoretical results based on small angle asymptotic theory give correct qual-
itative predictions; however, the range of applicability for accurate quantitative pre-
dictions is quite small. The critical By shows significant departure from the linear
dependence on hysteresis 0, — Or predicted by the asymptotic theory of Dussan V.
& Chow (1983). The analytical theory of Dussan V. (1985) gives correct quantita-
tive predictions over a significant range outside its formal region of validity (i.e. for
QA—HR < 1 and Bd<< 1)

(iv) The normal component of the gravitational force By has a weak effect on the
displacement of sessile droplets with stronger effect on the displacement of pendant
droplets. The normal component By increases the critical displacement force By for
a sessile droplet and decreases the critical By for a pendant droplet.

(v) The critical conditions for drop displacement are sensitive to the size of the
contact angles. For a specified hysteresis 84 — 0g, increasing the contact angle 64
increases the critical force Br for values up to 64 &~ 70° and decreases the critical
force for higher values of 0.
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